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ABSTRACT

We propose a distributed data management scheme for large data
visualization that emphasizes efficient data sharing and access. To
minimize data access time and support users with a variety of lo-
cal computing capabilities, we introduce an adaptive data selection
method based on an “Enhanced Time-Space Partitioning” (ETSP)
tree that assists with effective visibility culling, as well as multires-
olution data selection. By traversing the tree, our data management
algorithm can quickly identify the visible regions of data, and, for
each region, adaptively choose the lowest resolution satisfying user-
specified error tolerances. Only necessary data elements are ac-
cessed and sent to the visualization pipeline. To further address the
issue of sharing large-scale data among geographically distributed
collaborative teams, we have designed an infrastructure for integrat-
ing our data management technique with a distributed data storage
system provided by Logistical Networking (LoN). Data sets at dif-
ferent resolutions are generated and uploaded to LoN for wide-area
access. We describe a parallel volume rendering system that verifies
the effectiveness of our data storage, selection and access scheme.

CR Categories: I.3.2 [Graphics Systems]: Distributed/network
graphics—; I.3.6 [Methodology and Techniques]: Graphics data
structures and data types—;

Keywords: large data visualization, distributed storage, logisti-
cal networking, visibility culling, volume rendering, multiresolu-
tion rendering

1 INTRODUCTION

Large-scale computer/software simulations are increasingly preva-
lent in many fields of science. Such simulations can produce hun-
dreds of gigabytes to terabytes, including multiple variables on fine
spatial and temporal scales. For computational scientists, visual-
ization can be a crucial tool to validate scientific models and seek
novel domain-specific understanding. The increasingly collabora-
tive nature of scientific research across geographically distributed
groups creates additional demands on visualization technology. In
distributed settings, high performance and scalability must be main-
tained while preserving high throughput and ease of use, particu-
larly for very large data sets.

The sheer size of simulation data is often a significant technical
hurdle for distributed teams. The volume of data precludes storing
multiple copies at each site, especially given the typical frugality
of most local resource management. The common alternative is
to maintain a centralized storage archive, yet this requires use of
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some efficient data management middleware to dynamically access
and stream data to the end users. Such a system must be careful to
deliver a minimally necessary subset of any given data set to any
user requesting an interactive visualization session. Further, the
specific data management schemes will likely need to be different
for each front-end visualization algorithm.

This paper presents such a prototype data management middle-
ware system, known as the Distributed Data Management Sys-
tem (DDMS). This system is applied for volume rendering, being
one of the more general visualization approaches, and also a sig-
nificantly rigorous case study for validation of our design. The
DDMS prototype is based on the assumption that entire data sets
are held en masse on centralized storage devices, which we gen-
erally refer to here as “depots” (implying a single disk or some
integrated networked file system). The main data structure of our
DDMS is an Enhanced Time-Space Partitioning (ETSP) tree that
provides a novel capability to efficiently discover, at run-time, all
non-transparent, un-occluded (visible) portions of a given volume,
that are at the right level of detail (according to the current viewing
frustum and viewport resolution, in conjunction with the display ca-
pability of end user’s computer). This middleware applies the ETSP
tree under a family of transfer functions, and by exploiting various
data coherence characteristics, minimizes the amount of data move-
ment using a conservative (optimistic) scheme.

To optimize scalability, in terms of both performance and the
number of simultaneous users, our DDMS has been designed to
operate in a distributed system, specifically, employing networked
computers running Internet Backplane Protocol (IBP) [3, 20] for
data depots. Each data set is uploaded, possibly with replicas, to
IBP depots, which collectively act as an open distributed wide-area
file system. Any user can access the depot data without reserva-
tion, scheduling or authentication [3]. The collective storage ca-
pacity of all IBP depots currently exceeds 31 terabytes, with over
331 locally maintained depots across the US and 22 other countries.
The IBP infrastructure provides sufficient performance and flexibil-
ity for data uploading and downloading. Our DDMS automatically
stripes data across multiple IBP depots; this redundancy not only
facilitates reliability but also enables strategic data placement on
depots convenient to each participating site. Using DDMS, users
at different locations can easily access and visualize only relevant
subsets of a large time-varying data set, according to a specified
transfer function.

The rest of the paper is organized as follows. In Section 2, we de-
scribe previous work on data management and distributed visualiza-
tion. Our DDMS data management middleware, and its extension
for deployment on distributed systems, are described in Sections 3
and 4, respectively. We present experimental results of a parallel
volume rendering system using our data management schemes in
Section 5, and summarize our contribution and future directions in
Section 6.

2 BACKGROUND

Several previous projects have designed specialized data structures
for data management, particularly for time-varying data sets. One
of the most widely known is the Time-Space Partitioning (TSP) tree
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proposed by Shen et al. [21]. The skeleton of a TSP tree is a com-
plete octree, or a Space-Partitioning Tree (SPT), which is built by
recursively subdividing the spatial decomposition of the data vol-
ume, with each octree node covering a certain solid subvolume in
space. To capture temporal coherence of each octree node, a binary
tree, or a Time-Partitioning Tree (TPT), is built by recursively bi-
secting the time span. At each time partitioning tree node, the mean
value as well as the spatial and the temporal errors are stored.

To accelerate isosurface extraction in time-varying data sets, Sut-
ton and Hansen [22] developed a temporal Branch-on-Need tree.
Recently, Wang and Shen [23] introduced a Wavelet-based Time-
Space Partitioning (WTSP) tree that uses data compression to sup-
port multiresolution rendering of a time-varying data. It is now
generally agreed that more coherence can be exploited by perform-
ing a spatial partition before a temporal partition, as done in these
pioneering methods. Usually, these methods measure coherence by
variances of the voxel values in a block. However, in volume ren-
dering, a large variance does not directly correlate to a significant
difference in the resulting color or opacity of an octree node. Our
DDMS systematically extends TSP trees by incorporating more co-
herence metrics, such as transfer function dependent opacity and
visibility. In this paper, we refer to “opacity” as a transfer function
specific metric that solely depends on information local to a voxel,
while “visibility” of a voxel depends on the opacity of the collective
set of voxels or volume blocks between this voxel and the viewer.

Previously researchers have studied how to provide general re-
mote visualization capabilities. Typically, a remote visualization
system consists of a chain of servers, at least one client and possi-
bly some intermediate computing nodes. The data set exists entirely
on the server, with graphics primitives being streamed across the
wide-area network towards the client node. Caching and prefetch-
ing are common in remote visualization systems, on both client or
intermediate nodes, to hide communication costs. The fundamen-
tal problem is to design algorithms that transmit minimal amounts
of data over the network, with the network latency hidden to users
on the client side as much as possible. Most remote visualization
algorithms rely on transforming raw data to a more compact rep-
resentation, possibly offering a good approximation to the visual
appearance of the raw data representation [14, 4]; others employ
compression-based methods [13, 12, 9, 15]. Our DDMS employs
neither data transformation nor compression, and focuses on using
the capacity of the wide-area network and general distributed com-
puting architectures.

Using the wide-area network, for example, Bethel et al. [4]
leveraged a network protocol offering higher performance than
primitive TCP. Engel et al. [7, 8] demonstrated a remote visual-
ization infrastructure based on the Common Object Request Bro-
ker Architecture (CORBA). Recently, Brodlie et al. [5] developed
a Grid-based problem solving environment, complete with mod-
ules for visualization, analysis and computational steering. Most of
these systems require specialized reservation and scheduling to ob-
tain optimal performance, thereby limiting the number of simulta-
neous users. An infrastructure for distributed computing that does
not require such mechanisms is the Logistical Networking infras-
tructure. As evidenced by [6], gigabyte-level data sets can be ef-
ficiently streamed across a wide-area network. With some caching
and buffering, Logistical Networking can be applied as a distributed
file system, providing users with a perceived latency comparable to
the access from the local network. Our DDMS is independent of
any specific distributed data communication infrastructure, and can
be integrated with a number of systems, including GridFTP and
the middleware frameworks mentioned above. For this case study,
our DDMS prototype system was integrated with Logistical Net-
working, due to its efficiency, ease-of-use and inherent scalability
to support large numbers of simultaneous users. Section 4 provides
a more detailed discussion of this infrastructure.

Spatial Partition

Temporal Partition

- Coherent Time Spans
- POFs

- Value Histogram
- Errors

- Value Histogram
- Errors
- exNode Info

Figure 1: An Enhanced TSP (ETSP) tree.

3 OUR DATA MANAGEMENT MIDDLEWARE

The key components in our DDMS include an Enhanced TSP
(ETSP) tree for data selection and a cache system for data prefetch-
ing. The details of the ETSP tree and our cache design are presented
in the following subsections.

3.1 ETSP Tree

The ETSP tree (Figure 1) has the same skeleton of a TSP tree with
more information stored, which only requires one-time construc-
tion. Our DDMS assumes a coarse level of granularity and only
deals with blocks of voxels. Typical voxel block sizes are 32 cubed,
64 cubed, etc. All voxel blocks, throughout a time-varying data set,
are managed using an ETSP tree. At runtime, given an arbitrary
transfer function (from a family of an unlimited number of transfer
functions), the same ETSP tree can be applied to support dynamic
discovery of voxel blocks that are un-occluded and non-transparent,
at adaptive levels of detail. Our DDMS also assumes a consistent
data access pattern when navigating time-varying data sets, i.e., that
the user will maintain the same viewing setup, including view an-
gle, frustum and viewport, to render a sequential set of time steps
in the simulation [21, 23].

3.1.1 Encoding Visibility in ETSP Tree

As shown by [10], temporal occlusion coherence is an effective
metric for culling occluded portions of a volume, early in the visu-
alization pipeline. To leverage temporal occlusion coherence, first
an Optimized Plenoptic Opacity Function (OPOF) needs to be com-
puted for each volume block. An OPOF encodes the opacity of a
volume block for all possible viewing angles around the block, un-
der a family of transfer functions that share the same set of basis
functions. By giving each basis transfer function a different weight,
one can effectively control the opacity of different features that have
been identified in the data set.

Temporal occlusion coherence is straightforward to apply. For
instance, one can partition the entire spatial domain of a volume
into blocks. For each block, the OPOF function is computed for
each time step. Then, by comparing the opacity information be-
tween neighboring time steps for the same block, coherent time
intervals can quickly be identified. To accelerate the searching
process, such coherent time intervals are stored in our Space-
Partitioning Tree. The coherent time intervals of an octree inter-
nal node can be computed from the combination of the intervals
stored at its child nodes, in a bottom-up manner. Using the coherent
time intervals, the overhead to conservatively (optimistically) esti-
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mate visibility status of each volume block is limited solely to those
blocks behind some block whose block-wise opacity has changed
from the previous time step.

At runtime, we first traverse the Space-Partitioning tree to dis-
cover all blocks that are un-occluded. Then, we use methods de-
scribed in the next section to further cull away volume blocks that
are highly transparent. For blocks that are not completely transpar-
ent, but sufficiently uniform in the voxel RGBA assignment accord-
ing to the transfer function in use, we choose a lower level of detail.
This reduces the total amount of data required for the visualization.

3.1.2 Encoding Value Histograms in ETSP

The goal for a multi-resolution data selection algorithm is to use as
low a resolution as possible for a region, without losing too much
image quality. Intuitively, if a volume block at a lower level of detail
(LOD) has no noticeable difference in appearance compared to that
of a higher resolution, we can reduce data movement significantly
by using the lower resolution version of the block. This problem is
handled much more simply in object space than in image space.

Traditionally, the resolution selection for a data region is based
entirely on the raw data [23], often as a function of the variance of
the values inside the region. When the variance is low (according
to some user provided threshold), the block is considered uniform
and rendered using a lower resolution. This approach operates di-
rectly on the raw voxel values, and works well to reduce data move-
ment in regions of the volume showing homogeneous voxel values.
However, there are exceptions to this heuristic, especially when the
transfer function assigns contrasting colors to voxel values within
a small range. Conversely, a block with a large variance may be
classified to be of uniform color under some transfer functions, and
the variance will produce an overly conservative measure.

In addition to using variance (or spatial and temporal errors) in
the ETSP tree [23], we introduce a novel technique that uses Value
Histograms for reducing data movement in regions classified as ho-
mogeneous in color and opacity. In a value histogram, the distribu-
tion of voxel values in a block is captured over the possible range
of values. An example is shown in Figure 2. Suppose the value
range of the block is [0,10]. The value histogram that records the
number of voxels with each value (on a per-block basis) is shown
in Figure 2(a). Using the value distribution, we see that the given
block varies widely in value. Here, we have two opacity functions
that may be selected by the user. If the opacity transfer function
OpaFunc1 is chosen, all values in the block map to the same small
opacity value, yielding a block that is highly transparent and visu-
ally uniform, and can be rendered at a lower resolution. If the opac-
ity transfer function OpaFunc2 is used, the block has high visual
variation and needs to be rendered in the original high resolution.
(In this example, we show only the opacity. The actual resolution
selection also relies on other aspects of a transfer function.)

Since a value histogram is computed based solely on the val-
ues in a voxel block, we can pre-compute value histograms for all
blocks a priori. The resolution of the value histogram usually cor-
responds to the number of entries used in the lookup table of the
transfer function. Without loss of generality, consider this resolu-
tion as being k. Typically, k would assume a value of 256 when 8-bit
voxel values are dealt with, for example. As a result, the value his-
togram describes the number of voxels in a block that correspond
to each entry in the transfer function lookup table. To minimize
the storage cost, instead of storing an integer for each entry in the
value histogram, we use only one bit for each value histogram en-
try – 1 for “having voxels taking this value” and 0 for “no voxels
taking this value”. Besides offering the advantage of a compact
storage format, the bit vector also allows us to use efficient bit-wise
operations during run-time rendering computation. In addition, to
speedup the searching process, we compute the value histogram
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Figure 2: Value Histogram of a sample block and two opacity transfer
functions, OpaFunc1 and OpaFunc2. When OpaFunc1 is used, the
block is highly transparent and visually uniform, and can be rendered
in the lower resolution. If OpaFunc2 is used for high opaqueness and
visual variation, the block needs to be rendered in the original higher
resolution.

for an internal node of the Space-Partitioning Tree by applying the
bit-wise OR operations to all value histograms stored at its child
nodes. For a time-varying data set, value histograms are computed
first for the leave nodes in each Time-Partitioning Tree as we de-
scribed above, and are then used to calculate value histograms for
the internal nodes, in a bottom-up manner.

Similar to the value histogram, from the transfer function, we
also generate four k-bit vectors for R, G, B and Al pha respectively.
In the same way as with the value histogram bit vectors, 0 corre-
sponds to a “zero value” and 1 means that this voxel value maps to
a non-zero R, G, B or Al pha. By taking a bit-wise AND operation
between the value histogram and each of the 4 transfer function bit-
vectors, we can quickly identify and compare all voxel values that
lead to a non-zero RGBA tuple.

Using the value histogram, resolution selection for a block is
also straightforward, essentially consisting of checking whether a
given block is uniform or transparent after classification. If either
is true, then a lower LOD is used for the block. Specifically, for
each block we compute 4 bit-wise AND operations, i.e., masking
the value histogram against the R, G, B and Al pha bit-vectors. For
all voxel values with non-zero Al pha assignments, if the resulting
Al pha values are below a user-specified threshold (say, 0.05), the
block can be considered transparent and rendered at a lower resolu-
tion. If the variance between any two resulting RGB tuples is within
a certain difference threshold, then a lower LOD can also be used,
since the voxels in the block assume very similar colors.
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3.1.3 Summary of ETSP

In summary, in an Enhanced TSP tree we store coherent time in-
tervals, OPOFs, value variances (or spatial and temporal errors) as
well as value histograms. (Figure 1)

Then using an ETSP for reducing data movement, given a spe-
cific transfer function, involves the following steps. First, the leaf
nodes corresponding to the current time step (identified by travers-
ing the Time-Partitioning Tree) are accessed, and the un-occluded
nodes are identified. Second, three metrics are used to decide
whether a lower LOD rendering of the block should be used: (i)
low variance in raw voxel values, (ii) low opacity, hence less dis-
tinguishable visual differences in the block, and (iii) uniform color
assignment to non-transparent voxels in the block, resulting from
the user specified transfer function.

3.2 Cache Design for Data Prefetching

Large data visualization routinely deals with data sets that have to
be stored out-of-core. Therefore, after all blocks have been selected
for rendering the current time step, it would be beneficial if the
latency required to load the chosen data from out-of-core storage
could be further minimized. To meet this need, a caching module
for dynamic access to out-of-core data has been designed for our
data management middleware. The strategy here is to overlap data
transfer time with rendering time as much as possible, using a sep-
arate cache management thread.

In our cache system, each block is identified uniquely with two
values: a block identifier and a level of detail value. These values
form a compound key which is used to insert and retrieve blocks
from the cache. To increase the performance of certain cache-
related operations, we maintain two distinct data structures. One
is a hash table of cache elements is used for quick storage and re-
trieval. The other is a red-black tree, keyed on the last time the
block was requested. Such tree structure allows for efficient re-
moval of the least recently used (LRU) block. The elements of
each of these structures are linked, to work cooperatively, as shown
in Figure 3.

When an access request is made for a block, the cache first
checks the hash table for the block’s key. If the key is found, the
block’s “last requested time” is updated and reinserted into the red-
black tree, and the block data is sent to the front-end. This exploits
the temporal locality supported by ETSP tree, that is, a block ac-
cessed at time t is likely to be accessed again at a time following t.
If the key is not found, we first examine our current cache size. If
the cache is at its maximum capacity, we must remove those blocks
whose last requested time is farthest in the past. The red-black tree
is used to find and remove these blocks in O(log(n)) time. With
room now available in the cache, the data block is requested from
the depot and its information is stored in both the hash table and the
red-black tree, with the block’s last request time set to the current
time.

To minimize the data access time required by this visualization
system, we employ a data prefetching scheme supported by our
cache system. Instead of requesting a single block, the list of blocks
that will likely be accessed in the future is requested, with descend-
ing priority. Based on the OPOFs and the value histograms, we
are able to know such list of blocks beforehand for a small cost.
We also key the red-black tree on the sum of the last request time
and the priority. The first block in the list is considered the target
block and is given the highest priority. After the cache request is
finished, this target block must be in the cache. However, no such
guarantee is made for the remaining blocks. An attempt is made
to prefetch each of these blocks, but if one’s sum is less than the
current minimum in the red-black tree, the block is ignored. This
scheme allows blocks from previous requests, that are still near the

Figure 3: Caching system for quick data retrieval. A hash table is
used for efficient storage and retrieval, and a red-black tree manages
blocks’ importance in O(log(n)) time.

target block, to stay in the cache until the next miss, which benefits
users who advance and retreat through data, a common habit.

4 DISTRIBUTED DATA MANAGEMENT

To support distributed sharing of large data sets, we have deployed
our data management scheme into the wide-area network, lever-
aging the infrastructure provided by Logistical Networking (LoN).
We chose LoN because of a few unique features. First, the cur-
rent LoN infrastructure already provides 31 terabytes total of dis-
tributed storage in the US and 22 other countries. These resources
are unorchestrated, i.e. they do not require reservation and authen-
tication (therefore there is no need to obtain individual user ac-
counts). Second, there are inherent redundancies, similar to how
RAID disks incorporate fault-tolerance. This redundancy scheme
within LoN is transparent to the end users. Third, the API used
to access the data stored is relatively simple, and offers substan-
tial performance. As demonstrated by [6], it is practical to dy-
namically stream a gigabyte-level image database from California
to Tennessee, for supporting interactive remote visualization with
image-based rendering. More background concepts on LoN can be
found in [3] and implementation details, performance and fault-
tolerance of LoN can be found in [20].

The overall configuration of DDMS is illustrated in Figure 4. We
do not assume a specific type of local computing facility for the end
users. As the necessary data is discovered and delivered to the user,
on-the-fly by the data management middleware, the front-end visu-
alization can be performed on a PC cluster, a personal computer,
etc. Our prototype results have all been obtained using a moderate
PC cluster.

Where LoN differs from most distributed storage systems is that
data replication is internal to the file object rather than using a sepa-
rate replica catalog to maintain replica availability. In LoN, the file
is represented by the exNode [2]. Like the Unix inode, the exNode
maintains the mapping from logical file to the stored blocks. Un-
like the inode, it allows for replication and striping over multiple
IBP servers. The higher-level APIs take advantage of the replica-
tion and striping to improve performance and fault-tolerance, which
is critical in distributed systems. Our viz middleware depends on
the performance and fault-tolerance of the LoN software to achieve
good performance and overall reliability.

To deploy our ETSP tree based data management middleware
on LoN infrastructures, we build a multiresolution data hierarchy
for each time step. This construction is done in a bottom-up man-
ner. Conceptually, the construction will produce an octree. The leaf
nodes correspond to the data blocks in the raw data. The data block
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Figure 4: The system architecture.

at any internal tree node is a lower resolution combination of the
data blocks from its eight children. This lower resolution data is
generated using the method proposed by Guthe et al. [11]. After
the data hierarchy is built, data blocks at different resolutions are
uploaded to the LoN and then made accessible via exNodes. For
run-time data access, each leaf node of a Time-Partitioning Tree is
mapped to a corresponding exNode. Because of the large storage
capacity supported by the LoN, and the high data reconstruction
cost shown in [23], instead of compressing each data block and
storing only coefficients, we store the full data blocks ”as is.” In
this way, we avoid the dependencies among data blocks, as well
as expensive data reconstruction at runtime. Then a common data
set can efficiently be shared among a group of collaborators, each
using their own transfer functions.

Typically, visualization software relies on local resources that
are highly reliable (e.g. local disk or NFS). Since we are working
with data that is distributed over the wide-area, we have to consider
fault-tolerance. Although individual IBP depots can be highly reli-
able, they are in practice only as reliable as the underlying network
infrastructure. A client may be unable to access stored data due to
local network congestion, wide-area network congestion, conges-
tion in the remote IBP depot’s LAN, congestion on the IBP depot
(due to a large number of requests) or simply failure of the depot
or its host. To overcome potential faults, we use the replication
capabilities of the exNode. For this paper, we stored a complete
replica of the data at the University of Vanderbilt. We then create
partial replicas on two additional servers at University of Iowa and
StarLight in Chicago to provide redundancy. We chose partial repli-
cas to simulate intermittent unavailability of portions of the data.

To retrieve the data, we incorporated the LoRS API into our
middleware software, specifically the lorsSetLoad() function. This
function allows us to retrieve individual data blocks (64× 64× 64
each). If multiple replicas are available, lorsSetLoad() will try each
copy until the data is retrieved. If none of the replicas are available,
it will return an error. If data from one replica is not available, lors-
SetLoad() takes less than 0.2 seconds to switch from one replica to
another. If a replica is available but the performance is too slow,
lorsSetLoad() can try another source if the first source exceeds the
timeout set by our viz middleware.

5 EXPERIMENTAL RESULTS

To verify the effectiveness of our data management schemes, we
tested our DDMS with a parallel volume rendering system that is
similar to the system reported in [10]. Our parallel software ren-

derer runs on a PC cluster with 32 2.4GHz Pentium IV Xeon pro-
cessors connected by Dolphin Networks. Data produced from a
Richtmyer-Mevhkov Instability (RMI) simulation at Lawrence Liv-
ermore National Laboratory are used in our experiment. We se-
lected 64 time steps from the entire data set. Each time step is sized
at about 1GB with a spatial resolution of 1024× 1024× 960. As
described before, we assume a fixed viewing direction throughout
all time steps, and the time steps are rendered in a sequential order.

For this experiment, we generated and partitioned the multireso-
lution data for each time step, and resulting data blocks (64×64×
64 each) were uploaded to three public IBP depots at Vanderbilt
University, University of Iowa and StarLight in Chicago. The Van-
derbilt depots provide over 3 TB of storage and run Linux 2.6 on
an IBM x335 with dual 2.8 GHz Xeon, 1 GB of RAM and gigabit
Ethernet. Vanderbilt’s Abilene connection is 500 Mbps. The Uni-
versity of Iowa depots provide 1.5 TB of storage and run MacOS
X Server 10.3.8 on a dual 2.0 GHz G5 Xserve with 4 GB of RAM
and gigabit Ethernet. The UIowa Abilene connection is 1 Gbps.
The StarLight depot provides 7 TB of storage and is a YottaYotta
NetStorager running Linux 2.4 on a dual 2.2 GHz Xeon with 2 GB
of RAM and a gigabit connection to the Abilene backbone. Each
exNode had a complete replica at Vanderbilt. The exNodes also had
partial replicas at UIowa and/or StarLight. Hence, we had three in-
complete replicas accessible via exNodes. The data access code
used the LoRS API to retrieve the data using an adaptive algorithm
that tries each available source until the data are retrieved or no
more replicas exist [20]. Usually this process takes less than 0.2
seconds if block is not available and up to the timeout value spec-
ified by the user if the block is available but the throughput is too
low. In our experiment, the depots didn’t participate in the actual
computation or rendering.
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Figure 5: The comparison of the number of nonempty blocks, visible
blocks, and the actually rendered multiresolution data blocks at each
of 64 time steps.

The construction cost of the ETSP tree is very small. In our ex-
periment, it took us about 21 seconds to build the whole tree for
the RMI data set with 64 time steps. With the information stored
at the ETSP tree, we were able to significantly reduce the number
of data blocks transmitted across the network into the front-end vi-
sualization pipeline. Figure 5 compares the number of nonempty
blocks, visible blocks, and multiresolution blocks selected for ren-
dering at each of 64 time steps. In the worst case, only about 40%
of non-empty blocks are actually rendered at each time step. Al-
though lower resolutions were used for some regions, we could still
maintain high image quality through error tolerance selection. Fig-
ure 6 compares the rendering result of the original data with that of
a multiresolution data. Like any multiresolution algorithm, there is
a tradeoff between the performance and the image quality. With a
higher error tolerance the image quality drops, but fewer blocks are
accessed and rendered.

When dealing with large data sets, disk I/O and network com-
munication always incur high overheads. To smooth and hide such
latencies, we used our caching scheme to prefetch the data at the
next N(≥ 1) time steps. In our experiments, we have found the
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(a) (b)

Figure 6: The image of (a) the original volume (2678 blocks) and (b) a multiresolution volume (887 blocks selected by spatial error tolerance
= 700, visual error tolerance = 0.001.)
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Figure 7: The comparison of the data access time needed at each of
64 time steps if the data is stored at local disks, at the distributed
storage system (LoN), and prefetched through our cache system.

time to prefetch the necessary data for a time step to be usually
less than the time that it takes to render that time step. Specifically,
at each computing node, prefetching one data block took less than
0.16 seconds, while it usually takes 0.2 seconds to render a block
(roughly 8× 8 pixels per block, 0.5 step size). In such cases, the
network overhead is completely hidden.

We ran additional tests for three different scenarios: data is
stored locally at the rendering cluster, data is stored at distributed
storage depots, and data is prefetched into our cache system. As
shown in Figure 7, orders of magnitude difference exists in the re-
sulting performances. The worst case is obviously when the entire
data set is stored in the distributed storage depots without using
caching. The best case is using the cache when the latency incurred
by either local disk I/O or remote network traffic can all be effec-
tively hidden completely. In our experiment, less than 0.001 sec-
ond was observed for this case. The scenario of not using cache but
having the entire data local is moderate in terms of performance.
We note here that the regular access pattern in our rendering soft-
ware allows great cache coherence so that prefetching effectively
precludes possibilities of cache misses. For the best prefetching

performance, the rendering time of each time step should be longer
than the time to transfer the data. Thus, without the advantage of-
fered by DDMS, both the network transmission cost and rendering
overhead will increase proportionally. Network congestion, longer
rendering time and possibly thrashing the main memory on local
machines are all potential system bottlenecks.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose a distributed data management system
for large-scale volume visualization that allows researchers at geo-
graphically distributed locations to share data and research results
in an efficient and flexible way. Several data structures includ-
ing value histograms, an ETSP tree and a cache are introduced to
assist in efficiently identifying visible region, selecting LOD and
accessing the data. To avoid unnecessary data replication at dif-
ferent locations, we integrate our data management system with a
distributed data storage system, LoN, for the easy sharing of large-
scale data. A multiresolution hierarchy of the data is constructed to
support adaptive data selection and rendering. The whole data man-
agement middleware as well as a parallel volume rendering system
are implemented and tested to show the effectiveness of proposed
schemes and data structures.

Much work still needs to be done. More visualization compo-
nents will be added to support various fields of applications. Our
system needs to support users with different system resources, and
more intelligence will be provided to help the user decide the suit-
able visualization techniques or data resolution. Other frequency
based analysis methods need to be tried to improve our LOD se-
lection. As software for hardware accelerated rendering become
portable and more widely used, the rendering time of data blocks
could be greatly reduced in distributed systems. To still be able to
sufficiently hide network latency from front-end users, we will seek
to further reduce data transfer costs by incorporating techniques
such as data compression and optimized network protocols.
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